

Introduction

e and habit are fundamentally remote sensing and climate

- ▶ GCM studies have shown that treatment of habit is significant, especially in tropics (Kristjansson et al., 2000)
- Satellite and ground based retrievals of cloud properties depend strongly on habit assumptions

Put MISR Multiple Angles to Work

Procedure

ines multi-angle information from MISR blue with MODIS 2.1 um band for sensitivity to

- Retrieve best fit r_e, IWP, and crystal habit by minimizing deviation between modeled and measured reflectance over all cameras
- Ice cloud scattering properties from Yang et al. (2000) assuming gamma distribution with fixed effective variance and given r_e

$$\xi(\text{Re, IWP, H}) = \frac{1}{N} \sum_{i} \left[\frac{|\text{Sat}_{i} - \text{Model}_{i}(\text{Re, IWP, H})|}{\text{Sat}_{i}} \right]$$

Case Study 1: Cirrus at SGP

Habit	Metric	Reff	IWP	
Hollow Columns	0.032	27.6	51.3	3.3
4-Bullet Rosettes	0.039	27.4 μm	54.5	3.5
Rough Aggregates	0.041	37.5	63.5	2.9
Plates	0.046	22.5	62.1	4.8
Water	0.085	100 μm	364	5.7
MODIS		29.7 μ m	77.0 g/m ²	3.5

Case Study 2: Altocumulus at SGP

- Water is best fit; MODIS retrievals indicate mixed phase cloud; ARM microwave radiometer shows LWP of 40-80 g/m²
- Altocumulus actively growing as it moved over the ARM site; likely to have water at top of cloud
- Need sensitivity studies to determine depth in cloud to which retrieval is sensitive

Current Work

un operationally, rather than in case study

ip table of MISR/MODIS reflectances as a it, water path, effective radius, cloud height, solar and viewing geometry

- For each retrieval, correct reflectances for atmospheric transmittance and surface albedo
- ► Run retrievals on (10km)² boxes; average MISR/MODIS reflectances and MODIS cloud properties over box
- Preliminary results for all MISR overpasses of SGP in 2001; 32 cases with clouds and available MISR + MODIS data
- Beginning comparisons with MOD06 retrievals; trying to understand differences

Thick Cloud Retrieval Example

Thin cloud retrieval example

Summary of Retrieval Statistics

- Metric is measure of relative deviation from observed reflectance; metric = .05 implies matching reflectance within 5% on average
- Metric increases with decreasing optical depth due to:
 - Averaging of reflectances
 - MISR parallax issues
 - Effect of surface albedo

Future Work

es with MOD06 als

tatistics to determine forming well tical structure; habit

HIIIACOTOC

Compare retrieved IWP/effective radius to radar retrievals at ARM site

- New radar retrievals which use reflectivity and Doppler velocity can retrieve vertical profiles of R_e and IWC (Mace et al., 2002)
- Retrievals are sensitive to crystal habit because particle fall speed and effective density depend on habit
- Constraining the particle habit reduces the uncertainty in the radar retrievals
- Look at retrievals over ocean to extend to lower optical depths
- Include realistic surface albedo from MOD43 product

